Hero image

524Uploads

214k+Views

114k+Downloads

IET Faraday® DIY Challenge Day - IHEEM (Institute of Healthcare Engineering and Estate Management)
IETEducationIETEducation

IET Faraday® DIY Challenge Day - IHEEM (Institute of Healthcare Engineering and Estate Management)

(0)
A set of printable resources and guidance notes giving teachers and technicians the basic ingredients to run their very own Faraday Challenge Day. This cross-curricular activity day brings science, design and technology, engineering and maths together in an engaging way. The IHEEM challenge is based on the IET Faraday® Challenge of the same name from our 2021/22 season of IET Faraday® Challenge Days. Students are given an engineering brief (found in the student booklet) to help IHEEM to design a prototype which could be used in a children’s hospital to make a stay in hospital more comfortable and relaxing for young patients and their families, carers and friends. They will need to demonstrate that they have the engineering skills required to engineer and construct a working prototype of their design and pitch their products to the judges. Designed for six teams of six students (36 students in total) aged 12-13 years (year 8 England, and equivalent), the challenge encourages the development of students’ problem solving, team working and communication skills. This activity day can be tailored to the needs of your school and your students by adapting the PowerPoint presentation and the editable student booklet. What’s included? The complete set of downloadable materials includes: Teachers’ pack A list of the practical materials needed, presenters’ notes highlighting key areas and reinforcing key themes throughout the day, some handy hints on how to deliver the day . . . plus printable Faradays currency and student certificates. Student booklet Available as an editable MSWord document to allow the booklet to be adapted to meets the needs of your students and your school. PowerPoint presentation A step-by-step guide for your students throughout the day, with supporting notes for the delivery of the presentation. Film clip Full briefing video introducing the challenge to your students. All online resources are free to download, and the student booklet and PowerPoint presentation are fully editable, so you can tailor them to your students’ and your schools’ needs. And please do remember to share your activity highlights with us @IETeducation
Make a water mill that generates electricity
IETEducationIETEducation

Make a water mill that generates electricity

(0)
Create a water mill to produce electricity and power an LED In this exciting activity for primary students, kids will understand what is meant by, and the need for, renewable energy. They will make and test a water mill that produces enough electricity to light an LED and learn how water wheels work. This engineering activity will show students how electricity can be generated using the power of moving water and teach students facts about how the ancient Greeks have affected modern life. Resources for teachers are provided. And please do share your classroom learning highlights with us @IETeducation
Measure time with a water clock
IETEducationIETEducation

Measure time with a water clock

(0)
Make a water clock to measures time In this fun activity for kids, students will learn how water can measure time using principles from ancient Greece. They will then create a Greek water clock that can be used to measure a set period. This activity will test students’ maths abilities and teach them historical facts about ancient Greece. Resources are provided for teachers. And please do share your classroom learning highlights with us @IETeducation
DIY IET Faraday® Challenge - Lighthouse keeper transfer
IETEducationIETEducation

DIY IET Faraday® Challenge - Lighthouse keeper transfer

(0)
This Primary IET Faraday® DIY Challenge Challenge Day encourages students to consider how engineers work together to solve real-life problems. It enables students to experience the knowledge, understandings and skills engineers use within their work and the ways in which their strengths can be used to achieve an effective outcome. The students will need to work as a team to design a way of getting lighthouse keepers back to the mainland from a lighthouse based on a small island 200 metres from the nearest land. The design will need to use a zip line to carry the keeper safely across the waves which can be high during storms. The students will have access to the Faraday shop and a budget of Faraday money. They will need to plan what resources to buy and manage and record their budget. At times they may need to make decisions about affordability and effective use and should be encouraged to identify alternative, possibly cheaper, approaches to their final designs. At the end of the challenge day students will be asked to present their prototypes by demonstrating how their design could carry the lighthouse keeper safely to the mainland. Designed for six teams of six students (36 students in total) aged 8-11 years, the challenge encourages the development of students’ problem solving, team working and communication skills. This activity day can be tailored to the needs of your school and your students by adapting the PowerPoint presentation and the editable student booklet. The complete set of free downloadable materials includes: Teachers’ pack A list of the practical materials needed, presenters’ notes highlighting key areas and reinforcing key themes throughout the day, some handy hints on how to deliver the day . . . plus printable Faradays currency and student certificates. Student booklet Available as an editable MSWord document to allow the booklet to be adapted to meets the needs of your students and your school. PowerPoint presentation A step-by-step guide for your students throughout the day, with supporting notes for the delivery of the presentation. And please do share your classroom learning highlights with us @IETeducation
Make a sensor to test a waterlogged sports pitch
IETEducationIETEducation

Make a sensor to test a waterlogged sports pitch

(0)
Making a moisture sensor to check that a sports pitch is fit to play on In this engineering activity, designed for secondary school students, students will make and test a moisture sensor that referees can use to check the playability of a football pitch. This is one of a series of resources designed to allow learners to use the theme of the sport to develop their knowledge and skills in design and technology and engineering. This free resource focuses on making and testing a moisture sensor that referees can use to check the playability of the pitch. Activity introduction Your task is to make a waterlogging sensor that a referee can use to check whether the playing field is fit to play on. It should indicate when the pitch is too wet for play to safely take place. Follow the steps outlined in our free activity sheet to assemble your own moisture sensor circuit. Once the sensor is assembled place the moisture sensor in wet soil or grass to see if it works! After you have tested your moisture sensor circuit you can discuss with your teacher how successful the making of it has been. This activity will take approximately 50-80 minutes. What you will need A soldering iron, stand, sponge and mat/base Solder Moisture sensor circuit board A 9-volt battery and battery snap A 470-ohm, 1 kiloohm and 1.2 kiloohm resistor A transistor A 5 mm red LED A sticky pad The engineering context Sporting events require engineers of a wide range of disciplines to make sure that it runs smoothly and effectively. From structural engineers in charge of stadium design to textile engineers producing the players’ kits, the importance of engineers is huge. Electrical and electronic engineers need to have basic skills in circuit construction, including soldering components and testing electronic PCBs. Suggested learning outcomes By the end of this activity students will be able to make a moisture sensor circuit, they will be able to fit and solder components to a PCB and they will be able to test the moisture sensor circuit to check how well it works. Download the free activity sheet! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation.
Sports logo developement
IETEducationIETEducation

Sports logo developement

(0)
A project to design a sports logo This STEM activity is inspired by the Olympics. Students will learn about logo design by designing and creating a sports logo for a sports team of their choice. This free resource, aimed at secondary school students, will develop learners’ knowledge and skills in design and technology and engineering. Activity sheets for students and resources for teachers are provided below. This fun resource could be used as a one-off main lesson activity to build knowledge of branding and logos. It could also be used as part of a wider scheme of learning focussing on developing creative skills within graphics and graphic design. Imagine that a sports team is designing a new kit and your students have been asked to design a new logo for the team. They want the logo to represent the sport and be eye-catching. Your students will design a sports logo for a sports team of their choice. Their design should use an image or a simple shape that represents the sport. They need to think about how a sports logo is created from a single image. How are colours used to show movement on an object? How can an image of a sports person be converted into a sports logo? How can different shapes be used to add a background to the image? How do you add text to the logo? Then sketch their idea for a sports logo that meets the needs of both the brief and the design criteria given. Designs can be produced on the handout provided or on blank A4/43 paper. Once finished, ask three other people to suggest one improvement each to the design. Then select one of these suggested improvements and use it to update the design. This exercise should take approximately 50-60 minutes to complete. What you will need: Projector/whiteboard Sketching equipment Coloured pencils The engineering context Many top sport teams have logos that have become famous and appear on all their branded products. Suggest learning outcome By the end of this activity students will be able to design a sports team logo. They will also be able to communicate design ideas using sketches, notes and annotations. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. And please do remember to share your activity highlights with us @IETeducation
Sports logo design
IETEducationIETEducation

Sports logo design

(0)
Learn how to design a new logo for a sports team This STEM activity for kids is inspired by the Football World Cup but can be linked to any sporting event, the Olympics for example. Students will learn about logo design by designing and creating a sports logo for a sports team of their choice. This exercise, aimed at primary school students, will develop learners’ knowledge and skills in design and technology and engineering. Activity sheets for students and resources for teachers are provided. This fun resource could be used as a one-off main lesson activity to build knowledge of branding and logos. It could also be used as part of a wider scheme of learning focussing on developing creative skills within graphics and graphic design. Imagine that a sports team is designing a new kit and your students have been asked to design a new logo for the team. They want to logo to represent the sport and be eye-catching. Your students will design a sports logo for a sports team of their choice. Their design should use an image or a simple shape that represents the sport. They will need to think about how a sports logo is created from a single image. How are colours used to show movement on an object? How can an image of a sports person be converted into a sports logo? How can different shapes be used to add a background to the image? How do you add text to the logo? This exercise should take approximately 50-60 minutes to complete. What you will need Projector/whiteboard Sketching equipment Coloured pencils The engineering context Many top sport teams have logos that have become famous and appear on all their branded products. Suggested learning outcomes By the end of this activity students will be able to design a sports team logo. They will also be able to communicate design ideas using sketches, notes and annotations. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
Handmade recipe book activity
IETEducationIETEducation

Handmade recipe book activity

(0)
Design and make a recipe book of kids party food for a celebration Make a recipe book with your class or child! DIY book binding is easy for kids and you can get creative to create a cookbook in 50-80 minutes. This is one of a series of resources designed to allow learners to use the theme of celebration to develop their knowledge and skills in Design & Technology. This resource focuses on the designing and making of a recipe book for food items that could be served at a street party celebrating a special occasion. In this activity, learners will design and make a recipe book of food items that could be served at a party. They will research ideas for recipes or create their own and present them in a book format. They will then bind their book together, ready to cook for the party! **Download our free activity sheet to guide you through. ** All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. You can download our step-by-step instructions below as either a classroom lesson plan or PowerPoint presentation. Please do share your highlights with us @IETeducation.
Puff pastry pizza swirls recipe
IETEducationIETEducation

Puff pastry pizza swirls recipe

(0)
Design and make puff pastry pizza swirls with a STEM twist. Puff pastry pizza swirls recipe - easy and fun to do with 4-11 year olds! This can be done as part of a food tech lesson or at home, as the activity is all mapped to the UK curricula for you - download for free below. This is one of a series of resources designed to allow learners to use the theme of celebration to develop their knowledge and skills in Design & Technology. This resource focuses on the designing and making of a food item to serve at a street party celebrating the occasion. This activity could be used as a main lesson activity to teach sketching design ideas and preparing food products for particular events. It could also be used as part of a wider scheme of learning to support focused practical skills within food lessons or – through measuring and weighing ingredients – to support the development of basic mathematical skills. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. You can download our step-by-step instructions below as either a classroom lesson plan or PowerPoint presentation. Please do share your highlights with us @IETeducation
Design a place setting for a party
IETEducationIETEducation

Design a place setting for a party

(0)
Get ready for a street party celebration and introduce basic maths with this fun activity In this engaging STEM activity, learners will design and make a place setting for a party or celebration. They will identify the items required, measure the space needed for themselves and the items, and use this information to design and make the place setting. This challenge is perfect for 5–7-year-olds and could be used as a main lesson activity to teach about designing within a theme or practical applications of measurement. It could also be used as a part of a wider scheme of learning focusing on practical skills within graphics or graphic design. Activity: Design a place setting for a party This is one of a series of free resources designed to allow learners to use the theme of a celebration to develop their knowledge and skills in Design and Technology and Mathematics. This resource focuses on the designing and making of a place setting for a party to celebrate the event, so you can adapt to any celebration. Students will use basic maths skills for KS1 to practice with a ruler as they work out how much space is needed to sit and dine together for a party banquet. This exercise will take approximately 80 – 120 minutes and can be carried out in school or at home. Tools/resources required Paper and card Colouring pencils or pens Scissors Pencils and rulers Glue sticks Access to plates, cups and cutlery for measurement Disposable cutlery, if available Paper tablecloth (for extension activity) Suggested learning outcomes By the end of this STEM project students will be able to design from a brief, they will be able to measure dimensions and use these when designing and they will be able to create an attractive and fun place setting for a special party. The engineering context All designers and engineers need to be able to produce ideas related to certain themes and follow a design brief. This ensures that the products they design will meet the needs of the end users, customers or clients. Download the free Design a place setting for a party activity sheet! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
Make a DIY clay teacup
IETEducationIETEducation

Make a DIY clay teacup

(0)
Easy DIY clay teacup project for a celebration This fun STEM activity is a perfect way to get creative with your 4- to 11-year-olds! The free activity sheet guides you through the simple steps to make a clay teacup for a celebration party or commemorative cup to keep or give away as a gift. This activity is mapped to the UK curricula for design and technology and can be done at home or at school as a cheap DIY activity with air-dry clay. Let them develop hands-on skills using a coil pot method and discuss materials as you follow along with the activity steps to discover their inner engineer. This exercise could be used as a main lesson activity to teach learners about manipulating materials to make products. Download the activity sheet to develop your hands-on practical skills and follow our step-by-step guide on how to make a commemorative cup, using the coil pot method. As an optional extension learners could add decoration to the inside of their cups. This activity will take approximately 60 – 90 minutes to complete. Tools/resources required Air-dry clay Yogurt pots or potatoes Felt tip pens Acrylic paint Small container for water/clay mix Suggested learning outcomes By the end of this activity students will understand how structures are made using clay and they will be able to make, assemble and decorate a teacup for a celebration. The engineering context Engineers use clay to make 3D models of structures and even products like cars. Automotive engineers will make clay models of new cars to test how streamlined they are in wind tunnels. Download the free Make a DIY clay teacup activity sheet! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
Make bunting for a party
IETEducationIETEducation

Make bunting for a party

(0)
Making flag bunting as a class to use during celebrations and parties This is one of a series of free and printable resources designed to allow learners to use the theme of ‘celebration’ to develop their knowledge and skills in Design and Technology. This resource focuses on the designing and making of bunting to be put out at a party to celebrate an event. Follow this easy and free bunting activity as you make potato prints with 4-11 year olds! Create flags with your class or at home and celebrate events in style. This activity could be used as a main lesson activity to teach about designing within a theme, printing with templates and/or teamworking skills. It could also be used as part of a wider scheme of learning, focusing on practical skills within graphics and graphic design. Download the activity sheet for a step-by-step guide on how to make bunting for a party! As an extension learners could try using different shapes other than a triangle. This is a fun and simple activity that will take approximately 60 – 90 minutes. Tools/resources required Potatoes Knives Paint Paper Colouring pencils or pens Scissors Pencils and rulers String Stapler Suggested learning outcomes By the end of this activity students will be able to design a flag for bunting for a celebration. They will also be able to use potato printing techniques and they will be able to work as a team to assemble bunting from flags made by the whole class. The engineering context All designers and engineers need to be able to produce ideas related to certain themes and follow a design brief. This ensures that the products they design will meet the needs of the end users, customers or clients. Download the free Make bunting for a party activity sheet! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
How to make a crown activity
IETEducationIETEducation

How to make a crown activity

(0)
Use card to craft your very own crown - fit for royalty… In this practical STEM activity for kids, students will learn about 3D structures within a graphics context. Learners will have the opportunity to use a template to help them cut out the parts for a crown. This exercise is aimed at primary school students and could be used as a main lesson activity to teach learners about simple structures made from separate parts. This is one of a set of resources developed to support the teaching of the primary national curriculum. They are designed to support the delivery of key topics within maths and science. This resource is a structure-making activity which involves using graphics media to make and assemble a crown. Parts of this activity may be challenging to some learners as it requires good manual dexterity. Download the activity sheet below for a step-by-step guide on how to construct your own crown using card strips from a template. Once students have made their crown, the teacher will discuss the results of the activity with learners and explain how nets are used to make objects and how separate parts are used to make a larger structure. This activity will take approximately 50 – 80 minutes. Tools/resources required Glue sticks Coloured card Coloured crepe paper Scissors Paper fasteners Decoration materials Suggested learning outcomes By the end of this activity students will be know what a 3D shape is, they will understand how structures are made using separate parts and they will be able to make and assemble a crown structure from card strips. The engineering context Engineers use nets to allow them to make scale models of their design ideas. Nets are also used to make almost all the card-based packaging we use. Download the free How to make a crown activity sheet! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
Build a marshmallow igloo
IETEducationIETEducation

Build a marshmallow igloo

(0)
Make a fun craft project and use your maths to find out about structures with this quick and easy marshmallow igloo. Igloos are built out of blocks of ice or snow by Inuit people living in the Arctic regions of Canada and Greenland. They were used as temporary shelters when people were hunting. No need to worry, we won’t be expecting people to go into the Arctic and carve blocks of ice, this one is going to be made out of marshmallows – yum! You’ll only need a few simple items to make this project, and it can be an edible experiment too. The magic of maths is hands-on fun this Christmas! What you’ll need: • Bag of mini marshmallows or bag of marshmallows • If you are making the buttercream icing, you will also need • 70g softened butter • 150g icing sugar Activity sheets and notes for teachers can be downloaded for free. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Oh ho ho, and please do share your homemade igloos with us @IETeducation #SantaLovesSTEM
Bake a Yule log
IETEducationIETEducation

Bake a Yule log

(0)
Give making a Yule log a STEM twist by using key maths skills to work on the weighing and timing for this delicious Christmas dessert. This is a great activity that brings together baking skills, mathematics and creativity, and tastes delicious! The Yule Log is a traditional cake eaten at Christmas. It is thought that this cake originated in France to represent the wooden log that was burned to bring good luck through the winter months. It was hoped that by burning the log and keeping the ashes until the following year, it would ward off evil spirits during the long winter months. Download the recipe and teaching notes for free. Oh ho ho, and please do share your experiment highlights with us @IETeducation #SantaLovesSTEM
Make a gingerbread house
IETEducationIETEducation

Make a gingerbread house

(0)
Kids can create a delicious gingerbread house with this fun and easy baking recipe for beginners This fun and delicious recipe combines baking, engineering, and creativity! With this gingerbread house making project, children will have the opportunity to create their very own edible treat. This simple baking project for beginners provides a hands-on learning experience that explores the structural components of gingerbread house construction. Learners will examine the shapes and structures that contribute to the house’s overall stability, helping them develop a deeper understanding of engineering concepts. The engineering context Baking is engineering. Aspiring engineers can hone their science, maths, and technology skills through baking, as they use precision and creativity to engineer new and delicious treats. When it comes to making their gingerbread houses, children will need to channel their inner structural engineer to create a sturdy and eye-catching structure. The process of designing and building a gingerbread house requires careful consideration of the shapes, sizes, and placement of each piece, as well as the use of icing as a glue. Suggested learning outcomes This gingerbread house making activity offers a range of learning outcomes for students. In addition to developing baking and decorating skills, students will learn valuable STEM concepts related to structural engineering, including materials selection, load-bearing capacity, and stability. With guidance from their teacher or parents and our gingerbread house teaching activity overview, learners will have the opportunity to design and build their own gingerbread house, putting their newfound engineering skills into practice. By the end of this activity students will be able to design and make a gingerbread house and understand how to strengthen, stiffen and reinforce structures, gaining a deeper understanding of the principles of engineering. Download our free gingerbread house template and recipe A free gingerbread house template and recipe are available to download. They provide step-by-step instructions, a list of materials needed, and helpful tips for teachers and children alike. Oh ho ho, and please do share your baking and experiment highlights with us @IETeducation #SantaLovesSTEM
Comparing the carbon footprint of transportation
IETEducationIETEducation

Comparing the carbon footprint of transportation

(0)
A maths-based challenge for KS3 to calculate the journey times and carbon footprint of different methods of travel As well as testing students’ mathematical abilities, this activity highlights the issue of sustainable travel and the effects of some modes of transport on the environment. This could be used as a one-off main lesson activity to use maths skills in context, or as part of a scheme of work on sustainability, to build knowledge and understanding of climate change and ways of reducing it. Activity introduction This activity is one of a series of resources designed in conjunction with Network Rail to develop understanding and skills in key maths, science, and engineering concepts. The carbon footprint data in the presentation is derived from passenger-specific figures published by BEIS/Defra Greenhouse Gas Conversion Factors 2019. Transportation speeds are approximations based on typical values obtained from commonly used search engines. Any statistical or speed-related data used in this activity serves its sole purpose within the activity and may not accurately mirror current real-world conditions. Variability might arise due to seasonal changes, environmental conditions, or legal constraints. When utilising the activity sheet, students can construct tables for each journey, showcasing their findings (as depicted on the sheet). For air travel, a buffer of 3 hours should be allotted to account for check-in, security procedures, and boarding at airports. To add an additional layer of complexity, transit times to airports and railway stations could be incorporated. The presentation includes supplementary slides for those who prefer kilometres instead of miles. The engineering context Engineers must understand how products impact the environment; This pertains not only to modes of transportation but also encompasses the production of new items. They can use this knowledge to balance the environmental impact with the function carried out by the product. Engineers can also develop new or improved Suggested learning outcomes By the end of this activity, students will be able to solve a contextual problem using division and multiplication, and they will understand how to calculate journey times and the carbon footprint for alternative modes of transport. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. You can download our step-by-step instructions below as either a classroom lesson plan or PowerPoint presentation. Please do share your highlights with us @IETeducation.
How to make a zip line
IETEducationIETEducation

How to make a zip line

(0)
Designing and making a zip line for a toy This is a project to build a model of a zip Line. It could be carried out in pairs but will work for individuals. It requires some space to complete successfully but can be executed both indoors and outdoors. This activity could be used as a main lesson activity to teach learners about the effect of gravity on a body falling in a controlled manner, friction or the practical application of trigonometry. Resources required: String or thin rope, 10m should be enough A ‘passenger’ for the zip line Paper clips or stiff wire Sticky tape A stopwatch or a stopwatch App on a phone A ruler or tape measure A protractor Some paper and a pen to take notes Download the activity sheets for free! And please do share your classroom learning highlights with us @IETeducation
Design a pair of futuristic sunglasses
IETEducationIETEducation

Design a pair of futuristic sunglasses

(0)
In this activity learners will sketch and annotated design for a sustainable pair of sunglasses aimed at the young professional adults of the future. This activity could be used as a main lesson activity to teach learners about generating design ideas or sketching, or part of a wider scheme of learning covering design processes and techniques. It could also be used as part of an introduction to sustainability issues, such as the negative impact of plastic waste on the environment. Resources required: A4 or A3 paper, if not using handout Pencils, pens, coloured pencils and sketching tools Optional, if available: 3D CAD software for extension activity Download the activity sheets for free! And please do share your classroom learning highlights with us @IETeducation
Turn milk into plastic
IETEducationIETEducation

Turn milk into plastic

(0)
A project to make mouldable plastic from milk In this activity, learners will make mouldable plastic (casein) from milk and then use a mould to form a shape. It will help them to understand how plastic is made from natural resources. In an era of escalating environmental concerns and an urgent need for sustainable materials, transforming an everyday staple like milk into a versatile and biodegradable plastic presents a compelling and innovative solution. This activity could be used as a main lesson to teach learners about plastic, covering manufacturing processes and techniques using natural resources. It could also be used as part of an introduction to plastics and their environmental impact and help develop their knowledge and skills in Design & Technology, Engineering, Science and Mathematics. This resource is part of a group for Plastic-free Month that could be carried out either in school or at home. The engineering context Engineers actively contribute to environmental conservation by seeking innovative methods to produce plastic. Although plastic is extremely useful, the finite nature of crude oil underscores the need for alternatives. Bioengineers are currently exploring using organic resources such as sugarcane, potatoes, and various plants to enhance the sustainability of plastic production. Suggested learning outcomes By the end of this activity, students will be able to make mouldable plastic from milk, and they will understand that plastics made from natural products could be a way to protect the environment. Download our activity sheet and related resources for free! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. You can download our step-by-step instructions below as either a classroom lesson plan or PowerPoint presentation. Please do share your highlights with us @IETeducation.